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Abstract

Superresolution imaging techniques are used for enhancing resolution of images.

It has applications in various domains e.g. enhancement of images from survel-

lience cameras, medical diagnosis, astronomical observations, satelite images etc.

In this thesis we present a dictionary learning based approach for superresolution

using sparse image representation. By using pairs of low resolution(LR) and high

resolution(HR) images we first learn joint dictioanries for LR and HR images in a

way that the sparse representation is shared between them. We call this learning

a “Shared Latent Space” for related data. The model is learnt on patched image

data thus making it more robust against any kind of textures. To verify this we

have tested our model on different kinds of images (natural images, facial images,

etc.) and got equally good results in all the cases.

Keywords: Dictionary Learning, Gibbs Sampling, Sparse Representation, Super-

resolution, Shared Latent Space, Bayesian Inference, Beta-Bernoulli Process, Normal-

Gamma Process
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Chapter 1

Introduction

1.1 Problem Description

There has been a significant increase of interest in Bayesian inference aligned with

the fact that in the last two decades we have seen a large growth in availability

of computing memory and processing power. Because of this MCMC simulations,

Gibbs sampling methods are now easily realizable. Many advancements have been

done in image processing domain regarding the use of Deep Neural Networks,

RBMs, CNNs etc. All these models eventually learns some hidden representation

of the training dataset. These models are hierarchical / multilayer in nature in

the sense that they build features of different scale and abstraction in a bottom

up fashion. For each layer the feature activation map of the last layer is the input

to the next layer. All these features has proven to be very accomplished in tasks

like classification / prediction problems.

Now the model proposed by us is based on the concept of Sparse (and over-

complete) Dictionary Learning. The outputs (sparse representations for images)

from our model are particularly similar to the outputs from first layer of a con-

volutional neural network. Since we used patches generated by sliding window

the model thus generated are also shift equivariant which means that our model

captures any feature irrespective of its location in the image (just like CNNs).

For the super-resolution task we use the sparse representation of the LR image

to reconstruct the HR image with help of a parallely trained HR dictionary. We

learn this HR dictionary by sharing the latent space for LR and HR images’ sparse

representation learning during training phase.

1.1.1 What is Dictionary Learning?

Dictionary Learning is a signal representation method where the dictionary, a set

of predefined/learned basis vectors, is used to represent a given signal y as a linear
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combination of those fixed set of basis vectors. These basis vectors are also called

atoms. Usually in it’s most basic form it is expressed as,

y =
K
∑

k=1

skΦk + ǫ (1.1)

where, Φ = {Φk|k = 1, 2, ..., K} is the dictionary and Φk’s are called the atoms.

sk is the weight value for kth atom and ǫ is the approximation error.

1.1.2 What is Sparse Signal Representation/Compressive

Sensing?

A sparse signal representation is representing a signal with sparse vectors in some

traformed vector space. In the context of dictionary learning the learned repre-

sentation is called sparse when most of the values in weight matrix, S are nearly

(or exactly) zero. This is also known as Sparse Approximation problem. There

exists different algorithms for solving this sparse approximation problem most of

them being optimization based. We, in this thesis, explore a probabilistic model

of sparse dictionary learning and use Bayeian Inference to solve the problem of

super-resolution.

1.1.3 What is Super-Resolution?

Super-resolution is a technique for reconstructing a high resolution image from

one or more low resolution image(s)[1]. In literature there are two types of super

resolution algorithms single-image and multi-image based. Even though multi-

image based methods produces better results due to availability of more informa-

tion about the neighborhood of the missing pixel but multiple images may not

be always available. In this thesis we propose a method for single-image super-

resolution.

1.2 Motivation

In many scenarios an HR imaging device may not be available due to price, size

of device or other factors. But in many applications like medical imaging of

internal organs or obtaining HR images of astronomical objects detailed images

are very much desired and important. Even though there have been quite a few

approaches to solve this problem of super-resolution, most of the methods only

work for a particular type of images e.g. images with mostly high frequency

content(multicolored textures) or low frequency content as in facial images. To

tackle this problem we want explore Bayesian method of solving this problem.
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1.3 Organization of this Thesis

The rest of the thesis is organized as follows. In 2 we discuss a few existing works

on sparse image representation and super-resolution. We review the concept of

priors and conjugate distributions in 3 which is a crucial component of building

the Gibbs Samplers used in this thesis. 4.3 introduces Bayesian Inference and the

Gibbs Learning algorithm. 5.2 formalizes the super-resolution task and describe

about the preliminaries regarding the proposed approach. 5.1.4 details about the

non-parametric bayesian approach for solving the dictionary learning problem. In

5.2.3, we extend the sparse image representation model and discuss how we build

the Probabilistic Graphical Model for the single image super-resolution problem.

In 6 we experiment the performance of our model under various parameters and

settings.
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Chapter 2

Literature Review

An introduction and working of Markov Chain Monte Carlo (MCMC) methods

are given in [2]. It gives several examples in order to explain how to do inference

based on a Bayesian model. Further for a Naive Bayes model for text document

labelling (as in NLP) where an analytical expression for the pdf of posterior dis-

tribution isn’t available it shows how to derive a Gibbs sampler for generating

random samples from such a distribution. Importance of selection of proper pri-

ors and conjugate pairs are also well explained in this article.

Various optimization methods for solving Sparse Dictionary Learning problems

are summarized in [3]. Comprehensive analysis of Method of Optimized Direc-

tions / MOD also know as Iterative Least squares dictionary learning algorithm

(ILS-DLA), KSVD and other standard methods are documented in this paper. For

ILS-DLA the name itself explains the reason behind such nomenclature. It con-

siders the well known least square solution to the approximation problem. KSVD

in each iteration alternatively update the dictionary atoms and the weight matrix.

An alternative method for imposing sparsity using Beta process priors for a Bayesian

Dictionary Learning model is proposed in [4]. The generative model suggested in

this paper takes the form xi = Φ(zi · wi) + ǫi. zi is an indicator matrix denoting

whether a certain atom in dictionary Φ will participate in reconstruction of ith

sample vector. zi is modeled as N draws of Bernoulli process with success proba-

bility π drawn from a Beta distribution. Our final Dictionary Learning model is

a slight variation of the factor analysis model proposed in this paper.

Another similar model which tries to mimic the behavior of a convolutional neural

network or CNN by replacing the linear combination step by a convolution step

is shown in [5]. Here in the Bayesian inference step what is learnt are small spa-

tially localized canonical elements as the atoms, di, and a spatial activation map,

W , which through the convolution represents the contribution of an atom in each

small block of the image. Results similar to this are obtained when we considered

patched version of images by sliding window method for training data.
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The models presented in [6, 7, 8] along with the one that we are going to use in

this project are fully unsupervised in nature. [9] shows that the features learned

using these algorithms are actually visually important in case of image processing.

They resembles standard features used in image processing like edges, primitive

shapes, objects etc. As shown further in [10] stacked versions of CNN / Boltzman

Machine can actually learn features with much higher level of abstraction. When

such networks from different modalities are connected and learned together these

unsupervised algorithms learn new cross-modality features.

There are quite a few works on super-resolution using Dictionary Learning. One

similar approach for super-resolution using dictionary learning has been taken in

[11], where optimization based methods are used for learning the dictionary. Other

approaches towards single image super-resolution includes [12], where the authors

have used convolutional neural networks to generate a fitting texture from the low

resolution image. Though this model sometime fails when there is a sudden change

in the textures in the image. Another notable work is [13], where the authors,

in their model, estimates different distortion parameters for the LR image, eg.

translation, rotation etc. They model these parameters as random variables and

solves the estimation problem using variation approximation. Although the work

in [13] infers HR image from a set of degraded LR images. [14] uses the state of the

art Machine Learning models like Deep CNN for this task. They have also shown

in their paper how sparse coding methods can be viewed as Deep convolutional

networks.
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Chapter 3

Prior Distributions and

Conjugate Pairs

We discuss below a few standard distributions and the kind of prior belief on

parameters for which they have been used for.

3.1 Gaussian Distribution

If x is a Gaussian distributed random variable with mean and variance µ and σ2,

respectively, then probability density function of x is given by,

f(x|µ, σ2) =
1√
2πσ2

exp(− 1

2σ2
(x− µ)2) (3.1)

A Gaussian Distributed random variable, x, can take any value between (−∞,∞).

By changing the variance, σ2, we can control the how probable it is for x to take

values closer to the mean, µ. A high variance would mean flat prior or a non-

informative prior.

3.2 Multivariate Gaussian Distribution

Multivariate Gaussian Distribution is an generalization of univariate Gaussian

distribution to higher dimensions.

If X is a Multivariate Gaussian distributed random vector with mean-vector and

covariance matrix µ and Σ, respectively, then probability density function of X is

given by,

P (X|µ,Σ) = 1
√

2π|Σ|
exp(−1

2
(x− µ)TΣ−1(x− µ)) (3.2)
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Figure 3.1: A. PDF of Gaussian Distributed Random Variable, B. PDF of a
bivariate normal distribution

3.3 Gamma Distribution

PDF of a random variable, r, following Gamma Distribution, is

f(r|α, β) = βαxα−1e−xβ

Γ(α)
(3.3)

Figure 3.2: Plot of PDF of Gamma Distribution

A Gamma distributed random variable, x, can take value in the range [0,∞).

Thus this distribution is suitable for modelling random variables that take only

non-negative values e.g. variance of a distribution.

8



3.4 Bernoulli Distribution

A discrete random variable X is called Bernoulli Distributed if it takes on value 1

with probability p, and the value 0 with probability (1-p).

Pr(X = 1) = π (3.4)

Pr(X = 0) = 1− π (3.5)

(3.6)

The Probablity Mass Function can also be expressed as,

P (X = k) = (1− π)1−kπk (3.7)

where, k ∈ {0, 1} (3.8)

3.5 Beta Distribution

PDF of a random variable, b, following Beta Distribution, is

P (x;α, β) =
1

B(α, β)
xα−1(1− x)β−1 (3.9)

where, B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
(3.10)

A Beta distributed random variable, x, takes values only between [0, 1]. Parame-

ters like probability p of a Bernoulli distributed random variable can be modelled

using this parameter.

3.6 Conjugate Priors

A very important concept that we would use quite frequently in the rest of this

thesis is conjugate Priors. In Bayesian Probability theory, if the posterior distri-

bution, P (θ|X), is in the same family as the prior probability distribution, P (θ),

then the prior and the posterior are called conjugate distributions and the prior

is called conjugate prior for the likelihood function.

Notably, all the distributions in exponential family have conjugate priors. Follow-

ing are the conjugate pairs used for deriving the dictionary learning model used

in this project.

3.6.1 Normal-Gamma Conjugate Pair

Gamma distribution is the conjugate prior of Normal distribution with unknown

precision (if we choose variance to be the hyperparameter in that case conjugate

prior would be inverse-gamma distribution).

9



X|γ ∼ N (0, 1/γ) (3.11)

γ|α, β ∼ Gamma(α, β) (3.12)

Also the joint distribution, (X, γ), is then a Normal-Gamma distribution,

(X, γ) ∼ NormalGamma(γ, α, β) (3.13)

For various values of α & β, the nature of the marginalized distribution P(X =

x) is shown in the following figures. Note depending on the values of α & β the

size of the main lobe and the length of the tails can be controlled. This property

is used to obtain sparseness in one of our models.

Following plots in 3.3 were generated in Matlab as histograms.

3.6.2 Beta-Bernoulli Conjugate Pair

Suppose X is a discrete random variable and can take on values 0 or 1. The

porbability, Pr(X = 1) = p, which is unknown and in turn modeled as another

random variable. If p follows beta distribution with parameters a, b then (X, p)

is called a Beta-Bernoulli process.

P (P = p) =
pa−1(1− p)b−1

B(a, b)
(3.14)

P (X = 1|P = p) = p; (3.15)

By the property of conjugate priors, the posterior distribution, P (P = p|X = x)

follows Beta distribution also. N such beta-bernoulli process together forms a

beta-binomial process whose support is the set of non-negative integers upto n.

10



Figure 3.3: Marginal distribution of P(X = x)
(X, γ) ∼ NormalGamma(γ, α, β)
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Chapter 4

Bayesian Inference and Gibbs

Sampling

4.1 Bayesian Inference

Bayesian inference is a method of statistical inference based on Bayes theorem.

As more and more evidence or information becomes available we update our hy-

pothesis accordingly using the Bayes theorem.

P (Y |X) =
P (X|Y )P (Y )

P (X)

where, X and Y are events and P (X) 6= 0.

4.2 Markov Chain Monte Carlo

A class of methods known as Markov Chain Monte Carlo or MCMC are used

to sample from a desired distribution for which direct sampling sampling isn’t

possible. It does so by constructing a Markov chain whose steady state is the

desired distribution.

One such MCMC method, Gibbs Sampling is described below.

4.3 Gibbs Sampling

Gibbs sampling is one such Markov chain Monte Carlo algorithm for sampling a

sequence from a joint probability distribution. Though for one to be able to use

Gibbs Sampling all the conditional distributions has to fully defined preferebly

in the form of standard probability distributions. This makes sampling from the

desired distribution, efficiently, using a computer program easier.

As we saw in the polynomial regression example, since the multivariate posterior

distribution doesn’t follow any standard probability distribution direct sampling

is not possible. This is where Gibbs sampling comes into picture.

12



For sampling from the joint posterior distribution in Gibbs sampling method we

instead sample from the conditional posterior distribution of the system hyper-

parameters sequentially which in steady state approximately resembles the actual

joint distribution.

Mathematically, from a set of collected data samples we want to estimate the

hyperparameters, θ, of a proposed model. θ is the set of all the hyperparameters

involved in our model. So, when P (θ) is written it means the joint distribution of

(independent subsets of) hyperparameters, P (θ1, θ2, . . . , θk)
1.

θ = {θ1, θ2, . . . , θk}
θ∼j = θ − θj

P (θ|X) = P (X|θ1, θ2, . . . , θk)P (θ1, θ2, . . . , θk)/P (X)

P (θ|X) ∝ P (X|θ1, θ2, . . . , θk)P (θ1, θ2, . . . , θk)

P (θj|θ∼j, X) = P (θ|X)/P (θ∼j)

∝ P (θ|X)

= P (X|θ1, θ2, . . . , θk)P (θ1, θ2, . . . , θk)

The RHS of the proportionality relation has two terms in it, namely, likelihood of

the data multiplied by the joint prior probability of the system hyperparameters.

Next we make use of the assumption of independence of the hyperparameters. So,

the expressions above can be simplified even further.

P (θj|θ∼j, X) ∝ P (X|θ1, θ2, . . . , θk)P (θ1, θ2, . . . , θk)

= P (X|θ1, θ2, . . . , θk)P (θ1)P (θ2) . . . P (θk)

∝ P (X|θ1, θ2, . . . , θk)P (θj)

In the Gibbs sampling algorithm we are required to sample from these conditional

expressions, P (θj|θ∼j, X). Now we can use a conjugate pair for the likelihood

and the prior. This way the type of distribution of P (θj|θ∼j, X) will be directly

determined as that of the prior.

1Note that θi doesn’t have to be a scalar parameter it can be a vector of size more than one

too.
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Chapter 5

Super Resolution using Sparse

Image Representation

5.1 Sparse Image Representation using Dictio-

nary Learning

Dictionary Learning is a family of algorithms in the domain of Signal Processing,

which can be used to obtain sparse representation of signals. Dictionary is a

collection of basis vectors also known as atoms. Linear combination of these basis

vectors are used to represent a particular signal observation. These atoms are

different for different kind of applications. A sparse representation of a vector X

is usually denoted by,

Xa = DS (5.1)

where, Xa is the approximated representation of the vector X as a weighted linear

combination of columns of D.

5.1.1 Graphical Models

This is a graph used to represent the direct conditional dependencies between the

random variables and the hypperparameters. The nodes in the graph represents

the random variables and hyperparameters involved in the model. The directed

edges represents (one way) dependency between the nodes. In the following illus-

trations for graphical models, the nodes with dark borders are the parameters of

the model, and rest are the hyperparameters.

14



Figure 5.1: Graphical Model 1 : Simple Dictionary Learning

Figure 5.2: Graphical Model 2 : Dictionary Learning using Beta-Bernoulli Process

Both of the models above are explained in full details in section 5.1.3 and 5.1.4.

5.1.2 Dictionary Learning for synthetic data

Polynomial Regression using Bayesian Method

We picked the problem of Polynomial Regression first to illustrate and validate the

working of the Gibbs sampling implementation for the Dictionary Learning Model.
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Consider the following polynomial,

y0 = a3x
3 + a2x

2 + a1x+ a0 (5.2)

Suppose we are receiving samples from above system but the output is affected

by Gaussian noise, i.e. the data that we have are of the form,

y = y0 + ǫ (5.3)

where, ǫ denotes additive Gaussian noise.

Say, we have N pairs of input and noisy output data with us. We want to estimate

the scalar coefficients, {ai|i = 0, 1, ..., 3} of the system. Let’s denote the data as,

Y = [y0, y1, · · · , yN−1]
′

x = [x0, x1, · · · , xN−1]
′

a = [a0, a1, a2, a3]
′

n = [ǫ0, ǫ1, . . . , ǫN−1]
′

X =











1 x0 x2
0 x3

0

1 x1 x2
1 x3

1
...

...
...

...

1 xN−1 x2
N−1 x3

N−1











Y = Xa+ n (5.4)

Algebraic Solution:

The solution of the above problem obtained by minimizing the squared error with

respect to the polynomial coefficients, a, is given by,

â = argmina‖Y −Xa‖2

= (XTX)−1XTY (5.5)

Bayesian Method:

Now let’s see the Bayesian Method for solving the same problem,

1. Let us first solve a simpler version of the problem. The prior distribution for the

polynomial coefficients, a, and the random noise, n1, are as defined below. Assume

1Lowercase ’n’ is used for denoting noise, whereas, uppercase ’N’ is the number of data
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that σ2 (noise variance) and γ (precision of the prior Gaussian Distribution for a)

are known to us.

ai ∝ N (0, γ−1I)

∀ i ∈ 0, 1, 2, 3

n ∝ N (0, σ2I) (5.6)

Assuming all ai’s are independent,

P (a) =

(

γ√
2π

)4

exp(−γ

2
aTa) (5.7)

The likelihood of the observed data is given by,

P (Y |a,X) =

(

1√
2πσ2

)N

exp

(

− 1

2σ2
(Y −Xa)T (Y −Xa)

)

(5.8)

Now, the expression for the PDF of posterior P (a|Y,X) using Bayes rule is given

by,

P (a|Y,X) =
P (Y |a,X)P (a)

P (Y )

∝ P (Y |a,X)P (a)

∝ exp

(

− 1

2σ2
(Y −Xa)T (Y −Xa)

)

exp(−γ

2
aTa)

∝ exp

(

− 1

2σ2
[−2Y TXa+ aT (XTX + γσ2I)a]

)

∝ exp

(

− 1

2σ2
(a−M−1XTY )T (a−M−1XTY )

)

(5.9)

where, M = (XTX + γσ2I). Note that the terms which doesn’t depend on a has

been removed to obtain a proportionality relation to keep the derivation short.

As we can see the posterior distribution of the polynomial coefficients a follows a

Multivariate Gaussian Distribution with mean and co-variance matrix,

µa = (XTX + γσ2I)XTY

Σa = σ2(XTX + γσ2I)−1 (5.10)

samples
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2. In part 1 we saw that the posterior distribution of coefficients, a, follows mul-

tivariate normal distribution. Since we had only one model parameter a we can

directly use µa (it’s the MMSE estimate of a) as the estimator for a. But the

drawback of above method is that we have to have prior knowledge about noise

variance and precision of prior distribution of a.

In this section we would see how to model even the hyperparameters, in this case

noise variance(σ2) and precision of prior distribution of a(γ), as random variables.

The prior distributions for the hyperparameters are as follows,

a|γ0 ∼ N (a|0, γ−1
0 IN)

γ0 ∼ Gamma(α0, β0)

n|γn ∼ N (0, γ−1
n IN)

γn ∼ Gamma(αn, βn) (5.11)

The PDFs for the above hyperparameters,

P (a|γ0) =
( γ0
2π

)3/2

exp(−γ0
2
aTa)

P (γ0) =
βα0

0

Γ(α0)
γα0

0 exp(−β0γ0)

P (γn) =
βαn

n

Γ(αn)
γαn

n exp(−βnγn) (5.12)

And the likelihood of the data matrix,

P (Y |a, γn, X) =
γn
2π

N/2

exp(−γn
2
(Y −Xa)T (Y −Xa)) (5.13)

Now with the help of Bayes Rule, the expression of the joint posterior distribution

is given by,

P (a, γ0, γn|Y,X) ∝ P (Y |a, γ0, γn)P (a|γ0)P (γ0)P (γn)

∝ (γn)
N/2 exp

(

−γn
2
‖Y −Xa‖2

)

γ
3/2
0 exp(−γ0

2
‖a‖2)γα0−1

0 exp(−β0γ0)γ
αn−1
n exp(−βnγn)

(5.14)

The individual conditional expression for Gibbs sampling of a, γn and γ0 given

everything else is constant (denoted as P (·|∼)) are as follows,
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P (a|∼) ∝ exp(−γn
2
‖Y −Xa‖2) exp(−γ0

2
‖a‖2)

∝ N
(

(XTX + γσ2I)XTY, σ2(XTX + γσ2I)−1
)

(5.15)

P (γ0|∼) ∝ γ
3/2
0 exp(−γ0

2
‖a‖2)γα0−1

0 exp(−β0γ0)

∝ Gamma

(

γ0|α0 + 3/2, β0 +
‖a‖2
2

)

(5.16)

P (γn|∼) ∝ γN/2
n exp(−γn

2
‖Y −Xa‖2)γαn−1

n exp(−βnγn)

∝ Gamma

(

γn|αn +N/2, βn +
‖Y −Xa‖2

2

)

(5.17)

5.1.3 Dictionary Learning - Model I

The most basic mathematical representation of a Dictionary Learning problem is

given by, Y = DS + ǫ, where the NXK matrix D consists of K basis vectors,

which may or may not be known to us in prior. If, we have a D matrix with us,

this problem can easily be solved for S, by minimizing the squared error between

Y and DS. Using Lagranges Multiplier method the solution is found to be,

Ŝ = D†Y

D† = (DTD)−1DT (5.18)

where, D† is also called the Pseudo-Inverse of matrix D.

But in the more generalized form of this problem we only have the dataset of

observations Y. From there itself we want to learn the dictionary D. There are

quite a few algorithms for learning both the dictionaries and the appropriate rep-

resentation matrix or the weight matrix S. There are iterative methods for solving

this problem, where some cost function D and S are updated to obtain a local or

global minima. e.g. MOD(Methods of Direction), K-SVD, Matching Pursuit etc.

Here we would discuss the Bayesian Method for estimating the matrices D and

S.

In Bayesian Method, we first try to find out the joint posterior distribution,

P (θ|Y ), where, θ is the complete set of system parameters / hyperparameters

(discussed in the following paragraph). Later we can take the mean(also known as

MMSE estimate), median or the mode of this distribution as the estimate for the

system parameters. As discussed earlier in section 4.3 that an analytical solution
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to P (θ|Y ) for such systems is intractable. We use Gibbs sampling to draw samples

from the posterior distribution.

The first step to solving this problem is to choose a likelihood function and assign

priors to the model parameters. We assume a the noise present is Additive White

Gaussian Noise or AWGN, with a inverse variance γn(=
1
σ2 ). Hence the likelihood

function is,

P (Y |D,S) = N (Y |DS,
1

γn
) (5.19)

Up next we need to assign priors for D and S. The support for the elements

dik and ski in matrices D and S, respectively, are complete real line in both the

cases. i.e. −∞ ≤ dik ≤ ∞ and − ∞ ≤ ski ≤ ∞. We also want to impose

sparsity on the matrices to help obtain a sparse representation of the data. If we

choose the Normal-Gamma conjugate pair would be appropriate for this case as

it satisfies the first condition and as shown in 3.6.1 we can control the sparsity by

changing the parameters α and β.

For the noise variance we choose a Gamma prior with parameters αn and βn.
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Likelihood and Prior Distributions:

yi =
K
∑

k=1

dkski + ǫi, ∀ i ∈ 1, · · · , N

YCXN = D(CXK)S(KXN) + ǫ(CXN)

D =









...
...

...
...

...

d1 · · · dK
...

...
...

...
...









S =









...
...

...
...

...

s1 · · · sN
...

...
...

...
...









B =









...
...

...
...

...

b1 · · · bN
...

...
...

...
...









(5.20)

dij ∼ N (0, γ−1
d )

γd ∼ Gamma(αd, βd)

sij ∼ N(0, γ−1
s )

γs ∼ Gamma(αs, βs)

ǫ ∼ N(0, γ−1
n ) (5.21)

Now we would present2 the conditional distributions for the parameters given the

data for the model parameters/hyperparameters.

For sampling duv :

P (duv|∼) = N (duv|µ′
duv, γ

′
duv)

where, µ′
duv =

∑N
j=1 γnsvj(yuj −

∑

t 6=v dutstj)

γd + γn
∑N

j=1 s
2
vj

γ′
duv = γd + γn

N
∑

j=1

s2vj (5.22)

2Derivations are skipped as they are quite lengthy
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For sampling spq :

P (spq|∼) = N
(

spq|µ′
spq, γ

′
sqp

)

where, µ′
sqp =

∑M
i=1(yiq −

∑

τ 6=p diτsτq)γndip

γsqp + γn
∑M

i=1 d
2
ip

γ′
spq = γsqp + γn

M
∑

i=1

d2ip (5.23)

For sampling γd :

P (γd|∼) = Gamma(α′
d, β

′
d)

α′
d = αd +

MK

2

β′
d = βd +

‖D‖2F
2

(5.24)

where, ‖ · ‖F denotes the Frobenius Norm.

‖D‖2F =
M
∑

u=1

N
∑

v=1

d2uv

For sampling γs :

P (γs|∼) = Gamma(α′
s, β

′
s)

α′
s = αs +

KN

2

β′
s = βs +

‖S‖2F
2

(5.25)

For sampling γn :

P (γn|∼) = Gamma(α′
n, β

′
n)

α′
n = αn +

MN

2

β′
n = βn +

‖Y −DS‖2F
2

(5.26)

5.1.4 Dictionary Learning using Beta-Bernoulli Process -

Model 2

Sparsity

In this model rather than forcing sparsity in D and S matrices we introduce an-

other parameter bki, a discrete valued random variable, to denote whether dic-

tionary atom, dk is used in encoding the data vector, Yi. (bki, πk) is modeled as

Beta-Bernoulli process i.e. πk = Prob.(bki = 1) is unknown and also modeled as

random variable. We keep K sufficiently large and modify the parameters of the

parameters of the beta-Bernoulli process to make the B matrix very sparse. This
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inturn ensures the sparsity of the model without us having to set the hyperparam-

eters for the D and S matrices. We can now put flat priors on the elements of D

and S matrices.

Y = D(S ⊙ B) + η + ǫ

η =









...
...

...
...

...

η0 η0 · · η0
...

...
...

...
...









CXN

(5.27)

B is a binary matrix of same dimesions as S matrix. Another bias term η was

introduced to handle cases where the columns of the Y matrix may have non-zero

mean. (η, γη) is also modeled as Normal-Gamma conjugate pair as was done for

dik and ski. Likelihood and prior distributions are noted down as follows,

(Yi|D,Si, Bi, η) ∼ N
(

Yi|D(S ⊙ B) + η, γ−1
n IM

)

dk ∼ N (µd, γ
−1
d IM)

γd ∼ Gamma(αd, βd)

si ∼ N (µs, γ
−1
s IK)

γs ∼ Gamma(αs, βs)

(Bki = 1|πk) ∼ Bernoulli(πk)

πk ∼ Beta(απ, βπ)

η0 ∼ N (µη, γ
−1
η IM) (5.28)

Following are the conditional expression that we found and were required for the

Gibbs sampling algorithm.

For sampling dk:

P (dk|∼) = N (dk|µ′
dk, γ

′
dkIM)

where, γ′
dk = γd + γn

N
∑

i=1

BkiS
2
ki

µ′
dk =

(

1

γ′
dk

)

[γdµd + γn∆X∼k(Sk ⊙ Bk)]

∆X∼k = Y −D∼k(S∼k ⊙ B∼k) (5.29)
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For sampling γd:

P (γd|∼) = Gamma(α′
d, β

′
d)

where, α′
d =

KM

2
+ αd

β′
d =
‖D‖2F
2

+ βd (5.30)

For sampling si:

P (si|∼) = N (si|µ′
si,Γ

′
si)

where,Γ′
si = γn(DBi)

T (DBi) + γsIK

µ′
si = Γ′−1

si (γn(DBi)
T (Yi − η) + γsµs)

For sampling γs:

P (γs|∼) = Gamma(α′
s, β

′
s)

where, α′
s =

KN

2
+ αs

β′
s =
‖S‖2F
2

+ βs (5.31)

For sampling γn:

P (γn|∼) = Gamma(α′
n, β

′
n)

where, α′
n =

MN

2
+ αn

β′
s =
‖X −D(S ⊙ B)‖2F

2
+ βn (5.32)

24



For sampling Bki:

We normalize the RHS of the following to relation to obtain the conditional proba-

bility of P (Bki = 1|∼) or πik
′. This probability value is later used in the multilayer

model in 7.1.1 as the data for second layer.

P (Bki = 1|∼) ∝ πk

[

exp(−γn
2
(s2kid

T
k dk − 2skid

T
k∆Xi

∼k
))
]

P (Bki = 0|∼) ∝ (1− πk) (5.33)

For sampling πk:

P (πk|∼) = Beta(α′
π, β

′
π)

where, α′
π = απ +

N
∑

i=1

Bki

β′
π = βπ +N −

N
∑

i=1

Bki (5.34)

For sampling η:

P (η|∼) = N (η|µ′
η,Γ

−1
η )

where,Γ′
η = Nγn + γη

µη = Γ′−1
η [(Y −D(S ⊙ B))(γn1̄N)] (5.35)

5.2 Super-Resolution using Sparse Image Rep-

resentation

5.2.1 Super-Resolution: A Formal Definition

Super-Resolution is a family of models/algorithms that are used for increasing the

resolution of images captured by various imaging devices. The simples of the algo-

rithms in this family are interpolation methods, where missing pixels in the image

is replaced by some linear/quadratic/n-degree polynomial function of it’s neigh-

bouring pixels. But this method can’t create new information; it’s like puting the

average pixel intensity of the neighbouring pixels. In most of the cases it creates a

blurry magnified image and lacks sharpness like in a real higher resolution image.

Here we present a statistical model to probabilistically infer the missing pixels

by drawing samples from a distribution learned using pretrained dictionaries and

the original low resolution image. These dictionaries are initially learned from a

dataset of real low and high resolution image pairs.
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5.2.2 Objectives of Super-Resolution Method

Sparsity Condition

In the actual problem of single image representation in 5, the sparsity constraint

was kept to enforce learning of features that resembles the actual structures that

are observed in the images rather than some sinusoidal basis functions like Fourier

basis or DCT basis. Though learning such basis is possible only because of the

fact that any 256x256 matrix of pixel intensities doesn’t necessarily represent a

valid image. Real images tend to stay together in a much lower dimensional space

within the 256N×N d space, for a image of size N×N . This is as well observed as in

various kinds of representation models and also in case of other measurable signals

(e.g. speech). This means that if we consider very small patches of size p × p of

a larger image, those pathces can easily represented as a linear combination of K

number of patches where K << 256p×p. For example, in our experiments, setting

K = 400 proves sufficient to reconstruct any image nearly perfectly with patching

windows size of 4(i.e. total possible patches = 25616 = 3.4×1038). The probability
values learned by the model is shown in 6.15. We can see that the probability of

selection of a dictioanry atom is nearly zero for the atoms towards the right hand

side of the plot. (The atoms are sorted as per the probability values.)

When this constraint was used for the super-resolution problem not only did this

helped in learning sparse representations, as explained above, but also helped in

learning corresponding feature pairs for the high resolution and low resolution

dictionaries. This correspondence between the high and low resolution dictionary

atom pairs enables us to recover the high resolution image from the sparse encod-

ing of the downsampled image.

5.2.3 Joint Dictionary Learning - Shared Latent Space Model

In 5 we saw how an image can be represented as a sparse linear combination of a

set of small basis images; where each small patch in the image was representated as

a linear combination of fixed dictionary / code book of patches. In this section we

extend the model to solve the problem of Image Super-Resolution, where from

a LR image we have to obtain an approximated HR image as close as possible

to the ground truth HR image. Usual approaches taken towards Image Super-

Resolution uses, a set of low resolution images, differing by small pixel-shifts and

rotations, to predict the high resolution image. But single image super resolution

task is a much harder as the search space for the high resolution image is much

larger (less constrained) compared to that of multiple image super resolution task.
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Our approach towards the problem is by learning a shared latent space for the

selection matrices as in the dictionary model, namely S and B, for both low reso-

lution and high resolution images. While learning, by using a shared latent space

for selection matrices, we force the model to learn dictionary atoms for both res-

olutions such that corresponding pairs of atoms in the joint dictioanries should

be related to each other by a downsampling equivalent operation. This can be

observed in the results section 6.14.

5.2.4 Problem Formulation

We first represent the low resolution and high resolution images individually, using

the sparse dictionary model as we did in earlier sections for learning a sparse

representations for single images.

Yh = DhSh ⊙ Bh + ηh + ǫh

Yl = DlSl ⊙ Bl + ηl + ǫl

Now the main idea behind sharing the latent space is that in the sparse decomposi-

tions of these two images, the higher resolution image decomposition should ideally

be the exact same linear combination as the low resolution image decomposition

except that the high resolution atoms being replaced with the lower resolution

ones. (Dh replaced by Dl) We achieve this in our model by forcing Sh = Sl and

Bh = Bl and solving the two dictionary learning problem simultaneously. The

combined model is thus written as,

Yh = DhS ⊙ B + ηh + ǫh

Yl = DlS ⊙ B + ηl + ǫl

We define the sets of hyperparameters, Γh and Γl,

Γh = {γnh, γdh, γs}
Γl = {γnl, γdl, γs}

The changes in this model compared to the earlier one (for sparse image repre-

sentation) are in sampling distributions of S and B, and in rest of the parameters

as there would be now two sets of parameters one for each of LR and HR image

data matrices. The formulation of the posterior for the vectors of weight matrix,

Si is shown below.
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P (Si| ∼) ∝P (Yh|Dh, S, B, ηh,Γh)P (Yl|Dl, S, B, ηl,Γl)P (Si|γs)

∝
(γnh
2π

)Mh/2

exp
(

−γnh
2
‖Yhi −DhSiBi‖2

)

×
(γnl
2π

)Ml/2

exp
(

−γnl
2
‖Yli −DlSiBi‖2

)

P (Si|γs)

∝ exp
(

−γnh
2

[−2Y T
hi (DBhi)Si + ST

i (DBhi)
T (DBhi)Si]

)

× exp
(

−γnl
2
[−2Y T

li (DBli)Si + ST
i (DBli)

T (DBli)Si]
)

P (Si|γs)

Simplifying further,

P (Si| ∼) ∝ N (Si|µ′
si,Γ

′
si)

Γ′
si = γnl(DBli)

T (DBli) + γnh(DBhi)
T (DBhi) + γsIK

µ′
si = Γ′−1

si

[

γnh(DBhi)
T (Yhi − ηh) + γnl(DBli)

T (Yli − ηl) + γsµs

]

where, DBhi = Dhdiag(Bi)

The new conditional posterior distribution for B is given by,

P (Bki = 1| ∼) ∝ πk exp
(

−γnh
2

(S2
kiD

T
hkDhk − 2SkiD

T
hk∆Y h

i∼k)
)

× exp
(

−γnl
2
(S2

kiD
T
lkDlk − 2SkiD

T
lk∆Y l

i∼k)
)

P (Bki = 0| ∼) ∝ (1− πk)

5.2.5 Applying the model to RGB images

To apply the model on RGB images we first convert them to YCbCr space. Then

we apply super-resolution only to the Y-channel of image and for other two chan-

nels, Cb and Cr, we use simple bicubic interpolation as the Cb and Cr channel

mostly contains low-frequency contents.
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The overall training algorithm is given below.

Algorithm 1: Gibbs Sampler for Super-resolution

Yh : ph ×N data matrix
Yl ← LfYh

Γ : {γdh, γdl, γs, γnh, γnl, γbiash, γbiasl}
Super-Resolution Pseudo-Code:

α : {d : 1, s : 1× 10−1, bias : 1× 10−1, n : 1× 10−3}
β : {d : 1, s : 1× 10−1, bias : 1× 10−1, n : 1× 10−3}
Initial Samples:

{Dh, Dl, S,Π, B, ηh, ηl,Γ} ← InitialSampleFromPriors()
Total Gibbs Iterations: gsamples ← 5000

lastSamples = Queue(size = 500)
Initialilze Gibbs Sequence:

gm0s(1)← gm0

gmns(1)← gmn

as(:, 1)← anew
while Gibbs iterations done ¡ gsamples do

Yhapprox ← DhS ⊙ B + ηh
Ylapprox ← DlS ⊙ B + ηl
if lastSamples.length.isfull() then

lastSamples.removeFrontElement()
end
lastSamples.Queue.push([Yhapprox, Ylapprox])
Dh ← SampleMV N()
Dl ← SampleMV N()
S ← SampleMV N()
Π← SampleBeta()
B ← SampleBernoulli()
ηl ← SampleMV N()
ηh ← SampleMV N()
Γ← SampleGamma(α, 1/β)

end
aapprox ← mean(as(:, 500 : gsamples), 2)
yapprox ← Xdataapprox
Reconstruct and plot(mean(lastSamples.Yhapprox))
Reconstruct and plot(mean(lastSamples.Ylapprox))

29



Chapter 6

Experimental Results

6.1 Sparse Image Representation using Dictio-

nary Learning

6.1.1 Gibbs Sampling from a Joint Posterior Distribution

As we cannot directly draw samples from full posterior distribution, P (a, γ0, γn, |Y,X),

we iteratively draw samples from P (a|∼), P (γ0|∼) and P (γn|∼) (derived in 5.1.2,

note that they follow easily implementable distributions like Normal and Gamma

distribution) and use that sequence1 of observations to approximate the joint dis-

tribution.

We ran a simulation for approximation of polynomial coeffcients using Gibbs sam-

pling as explained above. We used the normrnd and gamrnd functions in MAT-

LAB for sampling from the above distributions. Given are the results from the

simulation,

Algorithm 2: Gibbs Sampler Pseudo Code - Part 1

Result: MMSE Estimate of Polynmial Coefficients
Initialization:

N ← 1000;
xs ← N random points [Input to the system];
a ← [1.2;1;2]; //[a0, a1, a2];
X ← [1 x1

s x2
s];

system order ← 3;
y0 ← X*a;
Noise Variance ← 25;
y ← y0 + AWGN;

1First few hundred samples of this sequence are dropped. This part of the sampling is called

burn-in period.
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First samples were generated from the polynomial y0(x) = a2x
2 + a1x + a0, then

AWGN noise, ǫ was added to generate input to the model.

’SampleGammaRV’, ’SampleMVNormal’ etc. functions are available in Matlab

Statistical Signal processing package. In the second last line of the pseudo code

above we discard the first 500 samples to get samples only after mixing is done(Burn-

in period). There’s no mathematical way to find out the correct burn-in period of

the algorithm. We can find this out experimentally only.

System Parameters:

y = y0 + ǫ

[a0a1a2] = [1.2 1 2]

ǫ ∼ N (0, σ2) where, σ2 = 25

Estimated Coefficients:

σ a0 a1 a2
1 1.17 0.9946 1.9973
10 1.52 0.83 1.998
25 3.142 0.992 1.969

Table 6.1: Gibbs Sampling Example: Coefficient Estimation

We see from the results that the higher order coefficients are estimated with quite

high accuracy. This model is very similar to the actual Dictionary learning model

as we explained earlier. In this case the dictionary equivalent matrix Xdat was

kept fixed the weight matrix(rather a vector) equivalent a was estimated using

Bayesian inference.

In the following plots we can see the performance of the proposed Dictionary

learning model. Even under noise variance as high as 25 the model is able to

estimate the coefficients with a maximum of 1% and 1.5% errors in the estimated
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coefficients of linear and quadratic terms, respectively.

Algorithm 3: Gibbs Sampler Pseudo Code - Part 2

Set Hyperparameters:

α0 ← 1e-1;

β0 ← 1e-1;

αn ← 1e-1;

βn ← 1e-1;

Initial Samples: gm0 ← Sample from Gamma Distribution(α0, 1/β0);

µ← zeros(systemorder, 1) ;

Σ← 1/gm0Isystem order;

anew ← SamplefromMultiV ariateNormal(µ,Σ);

gmn ← gamrnd(αn, 1/βn);

[Total Gibbs Iterations] gsamples ← 5000;

Xdat ← X;

xtx← XT
datXdat;

Initialilze Gibbs Sequence:

gm0s(1)← gm0;

gmns(1)← gmn;

as(:, 1)← anew;

while gsamples Gibbs iterations not complete do

it← CurrentGibbsIteration;

M ← xtx+ gm0s(it− 1)/gmns(it− 1)Inew order;

u←M−1XT
daty;

sig ← (1/gmns(it− 1))M−1;

as(:, it)← SampleMV NormalRV (µ = u,Σ = sig);

α← α0 + new order/2;

β ← β0 + as(:, it)Tas(:, it)/2;

gm0s(it)← SampleGammaRV (α, β);

α← αn + gsamples/2;

β ← βn + norm(y −Xdatas(:, it))
2/2;

gmns(it)← SampleGammaRV (α, β);

end

aapprox ← mean(as(:, 500 : gsamples), 2);

yapprox ← Xdataapprox;
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Figure 6.1: Performance of Bayesian Method in Polynomial Regression for different
noise variance
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Figure 6.2: Performance of Bayesian Method in Polynomial Regression for different
noise variance

6.1.2 Preprocessing of Image Data

System Setup:

For verification and performance evaluations of our models, the algorithms were

implemented using MATLAB and tested on various standard datasets of images.

The models were trained on two machines a Xeon server (12 cores and 128 GB

RAM) and a Core-i7 (8 Cores and 16 GB RAM with NVidia GTX960m GPU).

GPU was required for learning of the joint dictionaries in the second part of the

problem, i.e. super-resolution, to decrease the training time of the algorithm.

Generating the Data Matrix:

Images with the category ’Faces easy’ from Caltech10 dataset were used as the

training dataset. In the preprocessing step the images were first downsized to

128x128 or 256x256 dimensions and converted to grayscale images. After that

using a window of 8x8 or 16x16 overlapping patches were generated, each of which

was vectorized and finally put together as the training data matrix. All the ma-

trices generated from different images are concatenated together to create a single

global matrix. Location of each image inside the matrix was stored for reconstruc-

tion and future references.

For the super-resolution task various images were chosen from all 3 datasets with

appropriate amount of details for training and testing. In this part also data

matrices were generated from images using the same method as explained above.
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Though in the training section of the super-resolution algorithm there were two

seperate data matrices Yh and Yl for high and low resolution images, respectively.

Figure 6.3: Generation of Training Data Matrix from Images

6.1.3 Dataset

For testing the algorithm following datasets were used,

• DEAP Dataset: DEAP [18] or Database for Emotion Analysis using

Physiological Signals is a multimodal dataset with recordings of 32 channel

EEG signals and 8 other peripheral physiological signals. This dataset has

recordings from 32 volunteers.

• Caltech 101: This is a categorized image database with more than 40

sample images for each category. This database is very suitable for training

statistical or machine learning models.

• Set 5: Dataset used for Super-resolution Evaluation [23]

• Set 14: Dataset used for Super-resolution Evaluation [23]

6.1.4 Learning Features for Images

Setting the Priors

Following were the values set for the parameters of the final model. Note that

precision γd and γs has nearly flat priors (by setting a high variance).
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Let’s caculate the mean and variance of γd and γs,

mean(γd) =
αd

βd

= 1

var(γd) =
αd

β2
d

= 10

mean(γs) =
αs

βs

= 1

var(γs) =
αs

β2
s

= 10

mean(γn) =
αn

βn

= 1

var(γn) =
αn

β2
n

= 1000

The parameter πk follows beta distribution. So,

mean(πk) =
α

α + β
= 5.52× 10−4

var(πk) =
αβ

(α + β)2(α + β + 1)
= 3.08× 10−7
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6.1.5 Output Plots

MSE vs. Gibbs Iterations

Figure 6.4: MSE in approximation as a function of Gibbs Iterations

Figure 6.5: MSE in approximation as a function of Gibbs Iterations
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Reconstruction

Figure 6.6: Reconstructed image from coefficients and features estimated by the
algorithm

Figure 6.7: Image Reconstruction Example 1, A. Actual Image B. Reconstructed
Image
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Figure 6.8: Image Reconstruction Example 2, A. Actual Image B. Reconstructed
Image

Figure 6.9: Image Reconstruction Example 3, A. Actual Image B. Reconstructed
Image

Learned Features

Features Learned with Sparse Priors:

After learning was complete we reconstructed the images using single dictionary

atoms and the output were similar to edge filtered version of those images. Thus

our model in a completely unsupervised manner was able to learn features which

are known for their usefulness in various image processing tasks.

Figure 6.10: Reconstruction of Images using single dictionary elements
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Figure 6.11: Reconstruction of Images using single dictionary elements

Dictionary Columns Learned with Sparse Priors:

Figure 6.12: Dictionary Atoms learned by the algorithm

Features Learned with Non-Sparse Priors:

We also validated our model by taking away the sparsity settings which ended up

learning noisy features because of overfitting. Hence our prior settings also acted

as a regularization method for the algorithm.

Figure 6.13: Reconstruction of Images using single dictionary elements

6.2 Super-Resolution using Sparse Image Rep-

resentation

6.2.1 Training: Learning the Joint-Dictionaries

The Gibbs Sampler for learning of the joint dictionary for the super-resolution

problem was very similar to the one used in the earlier sections for sparse image

representations of single images. Except for the conditional posterior distributions
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for sampling of the weight matrix, S, and selection matrix, B, rest of the sam-

plers were same as the ones derived for the sparse image representation problem.

Although nature of the posterior distributions were still the same for both the

problems. The details of the sampling distributions are explained in 5.2.3.

First step of the training algorithm was to prepare the training data for the im-

ages. How the training data matrices were generated are explained in the section

5. For applying this algorithm to color images, the RGB format images are first

converted to HSV format and then super-resolution algorithm is only applied to

H-channel as data S and V-channel are relatively low frequency; so using bicubic

interpolation is sufficient for those two channels.

The pseudo code below illustrates the Gibbs Sampler for learning the joint dic-

tionary pair. Each of the sampling function wrapper used in the pseudo code

generates samples as per the conditional posterior distributions of the parameters

in the graphical model derived in the earlier section 5.2.3. Mean of the samples

generated in last I (from 100 to 500) iterations were used to reconstruct the mag-

nified high resolution images.

During iterations of Gibbs sampling, Yh and Yl was used to sample Dh and Dl

independently based the same S and B matrices thus enabling sharing of latent

space. As indicated by the new sampling equations in 5.2.3 and quite intuitively

the sampling of S and B requires both high resolution and low resolution data

matrices and dictionaries.

The joint dictionaries learned by the model is shown in 6.14. The dictionaries are

plotted in order of their selection probabilities. This is done by taking rowwise

mean of the B matrix. Note that how most of the LR dictionary atoms are

just downsampled version of corresponding HR dictionary atoms. In 6.15 we

have plotted the sorted selection probabilities of the dictionary atoms. From

these we can see that the model doesn’t even need all the 400 atoms for sparse

approximation of the images. As expected it was observed that the required

number of dictionary atoms increases with increasing patch size.

Hyperparameter settings:

Due to huge size of data matrices doing hyperparameter optimization based on

cross-validation is computationally intractable. So the same hyperparameter set-

tings, obtained during sparse image representation, is used for the joint dictionary

learning for the super-resolution problem also.
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Figure 6.14: Jointly Learned Dictionaries

Figure 6.15: Learned Probabilities for Joint Dictionary Atoms
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6.2.2 Testing

After training is done, the joint dictioanries, Dh and Dl are saved along with other

model parameters like Π, Γn etc as there is no need to sample those parameters

again, which would add a time overhead per iteration during testing. For testing

the model, the dictionaries learned in the training section are fixed and S and

B matrices are inferred using the same Gibbs sampler as the one used for sparse

image representation with the dictionary fixed to Dh.

6.2.3 Super-Resolution Results

RMSE of magnified image w.r.t. original High Resolution Image:

PSNR RMSE
Bicubic DL Bicubic DL

Racoon 27.64 28.76 10.58 9.3
Butterfly 22.66 23.86 18.76 16.35
Girl Face 30.16 32.05 7.91 6.37

Table 6.2: Results: 2x Super-resolution

(a) Low Res (b) Bicubic

(c) High Res (d) Model Super-resolution

Figure 6.16: Super-Resolution(2x magnification) Examples

The PSNR for DL model based HR reconstruction may be just slightly better

from the ones produced by bicubic interpolation but PSNR values doesn’t really
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(a) Low Res (b) Bicubic

(c) High Res (d) Model Super-resolution

Figure 6.17: Super-Resolution(2x magnification) Examples

(a) Low Res (b) Bicubic

(c) High Res (d) Model Super-resolution

Figure 6.18: Super-Resolution(2x magnification) Examples
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PSNR RMSE
Bicubic DL Bicubic DL

Racoon 25.99 27.98 12.78 10.17
Girl Face 29.96 31.53 8.09 6.76
Butterfly 19.94 22.78 25.66 18.5

Table 6.3: Results: 3x Super-resolution

infer much about visual qualities of a image. From the sample outputs given here

it can be seen that the reconstructions produced by our model have more details

and are of better quality in terms of blurriness.

(a) Low Res (b) Bicubic

(c) High Res (d) Model Super-resolution

Figure 6.19: Super-Resolution(3x magnification) Examples
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(a) Low Res (b) Bicubic

(c) High Res (d) Model Super-resolution

Figure 6.20: Super-Resolution(3x magnification) Examples

(a) Low Res (b) Bicubic

(c) High Res (d) Model Super-resolution

Figure 6.21: Super-Resolution(3x magnification) Examples
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Chapter 7

Conclusion

In this work we showed how Bayesian Inference can be used to design a Genera-

tive Model for superresolution. The problem is formulated as a joint dictionary

learning task. The model hyperparameters were first tuned for the sparse image

representation task. Later the same model have been used for the superresolution

task by just replacing two sampling distribution in the Gibbs sampler. Among the

two dictionary models the one leveraging the Beta-Bernoulli process for realizing

sparsity learns much faster and better than the other. As a non-parametric model,

theoretically, we should have kept size of the dictionary much higher that what

have been used but suggested by the learnt selection matrix only a fourth of the dic-

tionary columns have reasonable non-negligible probability meaning that adding

any further dictionary elements may just learn some noisy details corresponding

to some residual patches. How the model process a image by first patching and

then learning a weight corresponding to dictionary atom is very much like what

a layer in Convolutional Neural Network / CNN does. Thus the model presented

here can also be further modified to have several layers of dictionary learner just

like a CNN which may be able to learn more abstract and domain specific features

(e.g eyes, lips or nose for face images) of an image. Though learning such a model

would pose a high computational complexity.

7.1 Future Work

7.1.1 Deep Network using (Multilevel) Dictionary Learn-

ing

We saw that the first layer of our model learns useful features like edges/corners.

But if we now combine these features to learn new features, they should have much

more compicated structure which resembles the shape of actual object more. This

can be done in either same scale of a larger scale by increasing the patch window

size in the second layer. We have already tested version of this which got partially

correct results but due to computational issues we haven’t been able to produce

full results to be presented at the moment.
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Figure 7.1: Multilayer Dictionary Learning Model

7.1.2 Multimodal Dictionary Learning

As shown in [7] and [10] multilayer RBMs and Deep networks can be used suc-

cessfully learn unsupervised features not only for a single modality but also for

multiple modalities when trained using related data across modalities.

Following the same ideology we also propose a multimodal architecture for dic-

tionary learning. Given that multilayer networks learn abstract features in the

higher layers, two such networks working on different modalities (e.g. audio, im-
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age, text etc.) if merged together at the higher levels should be able to learn

related cross-modality features.
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