
Pretrained
Models in NLP

Presenter - Bishal Santra
CNeRG Reading Group, IIT KGP

July 18, 2019

Codes
Transformer-XS

Jupyter-Notebook

https://bsantraigi.github.io/tutorial/2019/07/08/training-xtra-small-transformer-language-model.html
https://github.com/bsantraigi/Transformer-XS/blob/master/transformer-xs.ipynb

huggingface/pytorch-transformer

LINK TO COLAB DEMO

Tutorial on Building a Transformer LM: Transformer-XS, Jupyter-Notebook

https://colab.research.google.com/drive/1Sj2FrFnRzotgW_QucIMRf5CMV3o549nH
https://bsantraigi.github.io/tutorial/2019/07/08/training-xtra-small-transformer-language-model.html
https://github.com/bsantraigi/Transformer-XS/blob/master/transformer-xs.ipynb

A Brief History of Pretraining
The main idea behind pretraining is to transfer knowledge from an already
trained model. It comes in many flavours, e.g.

● Word2Vec - Pretrained word embeddings; Fixed Embedding Matrix
● ImageNet - Pretrained feature extraction layers; Final layers fine tunable
● Infersent - Fixed RNN Encoder for sentences; Fixed Model; Pretraining

done on supervised task NLI
● ELMo - Pretrained model for Contextual Word Embedding; use as it is or

fine tune linear layers on top.

Character
Level
Information

Word Level Info

Word2Vec
● Default choice for word representation
● Learn word vectors from a large corpus

○ Generalized representation of words
● What’s the catch?

○ Represents word meanings, a necessity for
other NLU tasks

○ Word relations encoded upto certain extent
as w_i - w_j

Sources: HackerNoon, tensorflow.org

ELMo
● Pretrain forward and backward

language models simultaneously
● Contextual word embedding -

Hidden states from different
layers

● Sentence Embedding - Final
hidden states, sl and sl

’

● Add linear layers on top of above
embedding and fine tune

Sources: Deep contextualized word representations ELMo’s Loss function

AlexNet for Imagenet Dataset
● Idea of pretraining is widely used

in CV
● Pretrain a model for image

classification, a task which has
relatively more data

● Reuse initial layer weights in a
more difficult task, e.g. object
detection
○ Only fine-tune final layers.

● Lower level features doesn’t
change task to task.

Sources: gatech.edu

Timeline of pre-training methods in NLP

May,
2018

BERT

Devlin et al.

GPT

Radford et al.

June,
2018

Transformer XL

Dai et al.

Jan,
2019

GPT-2

Radford et al.

Feb,
2019

XLNet

Yang et al., Same group as
Transformer XL

June,
2019

2013

Skip-Gram/CBOW

Word2vec, Mikolov et al

Glove

Pennington et al

2014

FastText

Facebook, Bojanowski et al

2016

Infersent

Conneau et al

2017

ELMo

Peters et al

2018

Timeline of pre-training methods in NLP
May,
2018

BERT

Devlin et al.

GPT

Radford et al.

June,
2018

Transformer XL

Dai et al.

Jan,
2019

GPT-2

Radford et al.

Feb,
2019

XLNet

Yang et al., Same group as
Transformer XL

June,
2019

● All of these last 5 models are based on an architecture called Transformer
● Transformer - Model architecture entirely based on self-attention

Enter Self-Attention
● Today’s main focus. Self-attention based methods
● Let’s review it.
● What’s wrong with Seq2Seq model?

○ A critical and apparent disadvantage of this fixed-length context vector design
○ Incapability of remembering long sentences
○ Attention mechanism was born (Bahdanau et al., 2015) to resolve this problem

■ Mostly cross attention
● Self-Attention

○ Attention mechanism over a single sequence
○ We can just use the attention mechanism
○ Drop the recurrence component from Attention-Seq2Seq
○ Without the recurrence it’s parallelizable

Sources: lilianweng.github.io

Attention is all you need!
● We all have seen this image.
● But doesn’t really clear things up.
● Questions?

○ Intuition behind the model?
○ Why use this instead of RNNs?
○ How do I code this? Or where is this useful?

Sources: Attention is all you need,

Inside the Transformer
● Multiple layers of “attention and combine”, stacked on top of each other.
● It’s like extended-convolution.

Sources: Some chinese website!,

Inside the Transformer
● But that’s not all, there’s more to it.
● Each attention layer applies multi-head attention

○ On all tokens from previous layer
● The image below is single attention.
● Create copies of it within a single layer. We have multi-head attention.

Inside the Transformer

Inside the Transformer
● Understanding encoder and decoder is easy
● Encoder - Self attention on input sequence
● Decoder - Self attention on input sequence

(saved-memory) and input sequence till now.

Positional Encoding
● But in self-attention all inputs are equivalent.
● Model will interpret the input as Bag-of-words instead of a Sequence.
● Need to tell the position of each token explicitly.
● Create a positional embedding matrix of size Lxd and add it to word

embedding matrix.
● Add sinusoids of different freq.

Sources: The Illustrated Transformer

Positional Encoding

Sources: The Illustrated Transformer

Back to Pretraining
● Types of pre-training in NLP

○ Unsupervised Learning methods
■ Autoregressive Language Model

● ELMo, Transformer-XL
■ AutoEncoder Language Model

● BERT, XLNet
○ Supervised Learning Methods

■ Multi-Task Learning and Transfer Learning

BERT
● Pretrained model for Contextual-word Embeddings
● Pre-training Tasks

○ Masked LM
○ Next Sentence Prediction

● Training Dataset
○ BookCorpus (800M Words)
○ Wikipedia English (2,500M Words)

● Training Settings
○ Billion Word Corpus was not used to avoid using shuffled sentences in training.
○ Training with long contiguous contexts

Sources: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

BERT

Sources: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Looking Inside BERT
● Similar to what has been observed in

Deep CNN models in CV, BERT also
learns a hierarchy of features

● BERT also learns elementary
features required for NLU

● This shows why we should use such
architectures.

Sources: BERT Rediscovers the Classical NLP Pipeline

OpenAI GPT

Sources: HackerNoon, tensorflow.org

OpenAI GPT
Training Dataset

● BookCorpus
● Not 1B word benchmark

Model Settings

● 768 dim, 12 attention heads
● Gaussian Error Linear Unit (GELU) as Activation
● Learned position embedding matrix instead of the sinusoidal version

Sources: HackerNoon, tensorflow.org

Comparison

Sources: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

OpenAI GPT-2
● Extended version of OpenAI GPT
● Vocabulary size expanded to 50,257
● Trained on larger context of size 1024 instead of 512
● Dataset

○ This is the most important change
○ Trained on 40 GB of web crawl data
○ WebText: 8 Million documents
○ Wikipedia not included to prevent overlapping data
○ Filtering Good and Bad webpages

■ Outbound links from Reddit posts or comments with more than 3 karma (votes)
■ Heuristic indicator of what other users found interesting, educational or funny

Sources: Language Model are Unsupervised Multitask Learners

Transformer XL (eXtra Long)
● Problem of Transformer - Fixed Length Context
● Can’t carry over information beyond the length
● Context Fragmentation

○ Training batches from corpus doesn’t respect semantic boundary
○ It’s not easy to detect such context boundaries either

● Solution
○ Add Recurrence
○ Relative Positional Encoding Scheme

Sources:

Transformer XL
Vanilla Transformer LM looks like

Sources:

Transformer XL
Add recurrence and we have Transformer-XL.

● Segment Level Recurrence

Transformer XL
● No gradient is propagated to the previous

segment
● 2L keys and values. (L = Segment Length)
● Only L queries.

○ Only calculate states for new segment
● Crazy Fast Evaluation

○ 1800x times faster than vanilla Transformer
○ Reuse previous states instead of recomputing at

every step

Transformer XL
Relative Positional Encodings

● But reusing states in a transformer has a challenge.
● Positional encoding aren’t translation invariant.

Transformer XL
● Trained and tested on

○ Wikitext-103,
○ enwiki8,
○ text8,
○ One Billon Word corpus

● Can reproduce really long texts. Best
(Relative) Effective Context Length of 900

● SoTA on LM

Transformer XL (Example Generation)

Two Paradigms of Unsupervised LM Pretraining
BERT - A Denoising AutoEncoder approach to pretraining. Add noise to i/p
sentence by [MASK]ing ~15% of tokens.

Issues:

1. Independence Assumption
○ Assumes all masked tokens are independent -> Reconstructed independently
○ Prohibits timely learning

2. Input Noise -> pretrain-finetune discrepancy
○ [MASK] is a token that always occur in training text but never during inference.

3. Context Dependency

Sources: XLNet

Two Paradigms of Unsupervised LM Pretraining
ELMo - An AutoRegressive approach to pretraining.

Issues:

1. Context Dependency:
○ Either of the forward or backward LMs is able to look at a

single direction
○ Access to bidirectional features isn’t possible

Sources: XLNet, topbots,

XLNet solves it all!
● Introduces Permutation

Language Modelling
● No [MASK]ing
● Bi-directional feature

access

z: some permutation of
{1,2,3,...,L}

XLNet
● Note that the sequence

order doesn’t change.
● Only the factorization

order is change.
● This is possible because

seq order is fed trough
positional encoding

XLNet
● But it creates a new issue: How to tell the model which token of the

sequence is being decoded?
● Two-Stream Self-Attention for Target-Aware Representations
● Content Representation: h
● Query Representation: g
● Two seperate embedding channel
● Next word prediction will be done using g which doesn’t only have

positional encoding and no token information
● First Layer

○ h(0) is initialized with vectors from token embedding matrix
○ g(0) is initialized with w, a trainable matrix

XLNet

Using these Models
● The best source of all pretrained transformer models

○ PyTorch huggingface/pytorch-transformers
○ All the pretrained models are available through this package.

● Example Case:
○ BERT for NLI, QA, Reading Comprehension etc.
○ OpenAI-GPT for predicting follow-up text
○ Transformer XL for generating even longer text
○ XLNet to beat SoTA of BERT

Using these Models
Scenario 1 - Classification

● For classification or sequence labelling task.
● Use the [CLS] tag for sentence embedding and then a linear layer on top

of it.
● Use a [SEP] tag to denote boundary between multiple sentence inputs.
● NLI

○ [CLS] S1 [SEP] S2
○ Final [CLS] embedding -> Linear -> Softmax
○ Fine tune using Cross-Entropy loss

Using these Models
Scenario 2 - Sequence Tagging

● POS Tagging, Entity Detection, Semantic Role Labelling etc.
● Apply a linear classifier on the contextual embedding of all the word in

sentence.
● Fine tune on task specific dataset

Sources:

Using these Models
Scenario 3 - Abstractive Summarization

Summarization - Fine tune top layers of the network with a small dataset in a
application specific format

Training Inference

[Snippet]
…
[TL;DR]
…
[End of Summary]

[Snippet]
…
[TL;DR]

- Then greedy sample until [End of Summary
is produced] or MAX_LEN is reached

Sources: Language Models are Unsupervised Multitask Learners (GPT-2)

Using these Models
Scenario 4 - Translation (from a Language Model)

Training Inference

<english sentence> = <french sentence> <english sentence> =

Sources: Language Models are Unsupervised Multitask Learners (GPT-2)

Using these Models
Scenario 5 - Question Answering
No Extra Training Required! “WebText” has enough data to learn from. Fine tune with seed samples to help generate
short anwers.

Sources: Language Models are Unsupervised Multitask Learners (GPT-2)

Using these Models
Scenario 5 - Question Answering
● In this particular tasks authors made sure same questions haven’t appeared in WebText in the

exact form
● Train-test overlap was verified using Bloom Filters built with 8-grams

Sources: Language Models are Unsupervised Multitask Learners (GPT-2)

Using these Models
Scenario 6 - Dialogue Response Generation

Training Inference

[U1] …
[U2] …
[U1] …
[U2] …

[U1] …
[U2] …
[U1] …
[U2] …
<Prompt>
[U1]

Then do greedy sampling.

What else can we do with these?
It’s up to your imaginations!

Talktotransformer.com

What else can we do these?
Deep Tabnine

Deep TabNine is based on GPT-2,

which uses the Transformer

network architecture.

Sources: https://tabnine.com/blog/deep,

Links to Papers
1. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint arXiv:1810.04805.
2. Tenney, I., Das, D., & Pavlick, E. (2019). Bert rediscovers the classical nlp pipeline. arXiv

preprint arXiv:1905.05950.
3. Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language

understanding by generative pre-training. URL.
4. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are

unsupervised multitask learners. OpenAI Blog, 1(8).
5. Dai, Z., Yang, Z., Yang, Y., Cohen, W. W., Carbonell, J., Le, Q. V., & Salakhutdinov, R. (2019).

Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860.

6. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., & Le, Q. V. (2019). XLNet: Generalized
Autoregressive Pretraining for Language Understanding. arXiv preprint arXiv:1906.08237.

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

Thank you!
Any Questions?

